Reflection on Ecological Modernization Process through the use of Smart Meter in Iran's Groundwater Distribution Sector

Authors

1 PhD Candidate of Development Studies, University of Tehran

2 Associate Professor of Sociology, University of Tehran

Abstract

The deficit of underground water reservoirs in Iran has exceeded 130 billion cubic meters. This is while the water government in Iran has been trying to balance the underground water reservoirs by introducing smart meter technology into the water governance network since 2004. This policy could be an effective effort for the benefit of the environment. However, the project to control the use of underground water reservoirs with the continuation of the process of making water distribution smart and trying to reduce the amount of extraction from wells in the “restoration and balancing plan” of the country's underground water resources from 2013 has been also unsuccessful. The ideal prospects of “the document on adapting to water shortage”, which has been announced based on the previous plans since May 2021, have not yet yielded any results as well. Since the introduction of a nature-friendly technology into the water governance network can be considered an idea in line with the process of Ecological Modernization(EM), this article has tried to explain the problems of making it compulsory to install smart meters on agricultural wells by using evaluation tools of EM. In this article, EM process in Iran's water governance was analyzed in different sectors of the market, innovation and technology, government, civil society and environmental awareness. Based on the qualitative model of the evaluation of the ecological modernization process, the environmental result of this process in the country was placed in the very weak stage of such modernization with a score of 5 out of 50 for the complete achievement of EM. The final result of the policy analysis of installing smart meters in Iran is that the water governance and stakeholders’ network is not fully prepared for such a technology-oriented transformation in the water distribution process. Considering the super-critical condition of underground water in Iran, by maintaining the process of ecological renovation, the 45 points not obtained in the evaluation of the environmental result of this project can be compensated with a social approach and according to the participatory principles of the process of ecological renovation.
 

Keywords

Main Subjects


  • اکبری، محمدرضا و همکاران (1398). بررسی کنشگری شورای عالی آب در حکمرانی منابع آب ایران: تحلیلی مبتنی بر مصوبات (1389-1397)، فصلنامۀ علمی-پژوهشی سیاست‌گذاری عمومی، دورۀ پنجم، شمارۀ 4: 9-31.
  • بیگلری، شیرین و موسوی راد، سیدحامد (1395). توسعۀ مدلی جهت تحلیل مصرف آب در زنجیره‌های تأمین صنایع با توجه به مطالعۀ موردی صنایع فلزی، سیزدهمین کنفرانس بین‌المللی مهندسی صنایع، بابلسر.
  • تبریزی‌دخت فرد، النا و همکاران (1395). عوامل مؤثر بر میزان رضایت بهره‌برداران از تشکل‌های آب‌بران در حوضۀ سد سهند هشترود، پژوهش آب در کشاورزی، دورۀ سی‌ام، شمارۀ 3: 401-415.
  • زارعی دستگردی، زهرا و همکاران (1387). تحلیل و بررسی مسائل و مشکلات تشکل آب بران در مدیریت شبکۀ آب‌رسانی بخش جرقویۀ شهرستان اصفهان، علوم کشاورزی ایران، دورۀ سی‌ونهم، شمارۀ 1 (ویژۀ اقتصاد و توسعۀ کشاورزی): 227-235.
  • ساعی، فریناسادات و همکاران (1398). ارزیابی و مقایسۀ کارایی فنی تشکل‌های آب‌بران شهرستان مراغه، فصلنامۀ تعاون و کشاورزی، دورۀ هشتم، شمارۀ 32: 27-49.
  • شکری، زهرا و همکاران (1393). شناسایی و تحلیل عوامل مؤثر بر موفقیت تشکل‌های آب بران در پروژۀ مدیریت جامع آب و خاک البرز، پژوهش آب در کشاورزی (علوم خاک و آب)، دورۀ بیست‌وهشتم، شمارۀ 1ب: 241-250.
  • عطایی، پوریا و ایزدی، نسیم (1393). عوامل تأثیرگذار بر تمایل کشاورزان به ایجاد تشکل‌های آب‌بران، فصلنامۀ تحقیقات اقتصاد و توسعۀ کشاورزی ایران، دورۀ پنجاه‌وچهارم، شمارۀ ۲: ۲69-۲۷۹.
  • علی‌پور و همکاران (1395). بررسی طرح احیا و تعادل‌بخشی منابع آب زیرزمینی، مطالعۀ موردی: دشت پایلوت ممنوعۀ بحرانی نیشابور، دومین کنگرۀ ملی آبیاری و زهکشی. دانشگاه صنعتی اصفهان (2-4 شهریور 1395).
  • فرزانه، محمدرضا و همکاران (1395). تحلیل بستر نهادی سیستم منابع آب زیرزمینی محدودۀ رفسنجان با رویکرد پویایی سیستم، تحقیقات منابع آب ایران، سال دوازدهم، شمارۀ 2: 67-82.
  • گرانمایه‌پور، علی و بیگدلی‌نژاد، مجید (1395). بررسی نقش آموزشی رسانۀ ملی در اصلاح الگوی مصرف آب در بین شهروندان تهرانی، پایان‌نامۀ کارشناسی‌ارشد، دانشگاه آزاد اسلامی واحد تهران مرکزی.
  • Akbari, M., Toomanian, N., Droogers, P., Bastiaanssen, W., & Gieske, A. (2007). Monitoring irrigation performance in Esfahan, Iran, using NOAA satellite imagery. Agricultural water management88(1-3), 99-109.
  • Castaño, S., Sanz, D., & Gómez-Alday, J. J. (2010). Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water resources management24(4), 795-814.
  • Chandrakanth, M. G., & Romm, J. (1990). Groundwater depletion in India—institutional management regimes. Natural Resources Journal, 485-501.
  • Chebaane, M., El-Naser, H., Fitch, J., Hijazi, A., & Jabbarin, A. (2004). Participatory groundwater management in Jordan: development and analysis of options. Hydrogeology Journal12(1), 14-32.
  • Dunnivant, F. M., & Anders, E. (2006). A basic introduction to pollutant fate and transport: an integrated approach with chemistry, modeling, risk assessment, and environmental legislation. John Wiley & Sons.
  • Glynn, P., Cadman, T., & Maraseni, T. N. (2017). Business, organized labor and climate policy: forging a role at the negotiating table. Edward Elgar Publishing.
  • Guyatt, G. H., Oxman, A. D., Kunz, R., Jaeschke, R., Helfand, M., Liberati, A., ... & Schünemann, H. J. (2008). Incorporating considerations of resources use into grading recommendations. Bmj336(7654), 1170-1173.
  • Howes, M., McKenzie, M., Gleeson, B., Gray, R., Byrne, J., & Daniels, P. (2010). Adapting ecological modernisation to the Australian context. Journal of Integrative Environmental Sciences7(1), 5-21.
  • Jahromi, H. N., Hamedani, M. J., Dolatabadi, S. F., & Abbasi, P. (2014). Smart energy and water meter: a novel vision to groundwater monitoring and management. Procedia Engineering70, 877-881.
  • Jänicke, M. (2008). Ecological modernisation: new perspectives. Journal of cleaner production16(5), 557-565.
  • Zekri, S., Madani, K., Bazargan-Lari, M. R., Kotagama, H., & Kalbus, E. (2017). Feasibility of adopting smart water meters in aquifer management: An integrated hydro-economic analysis. Agricultural Water Management181, 85-93.
  • Kløve, B., Allan, A., Bertrand, G., Druzynska, E., Ertürk, A., Goldscheider, N., ... & Schipper, P. (2011). Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environmental Science & Policy14(7), 782-793.
  • Kolbe, S. (2020). Join the urban water industry commitment to the UN SDGs [Online]. Water Services Association of Australia. Available: https://www.wsaa.asn.au/news/join-urban-water-industry-commitment-un-sdgs. Accessed 1 Feb 2022.
  • Kumar, D. M. (2013). Raising agricultural productivity, reducing groundwater use and mitigating carbon emissions: Role of energy pricing in farm sector. Indian Journal of Agricultural Economics68(902-2016-66838), 275-291.
  • Mohapatra, S. P., & Mitchell, A. (2009). Groundwater demand management in the Great Lakes Basin—directions for new policies. Water Resources Management23(3), 457-475.
  • Rutherfurd, I. A. N., & Finlayson, B. (2011). Whither Australia: will availability of water constrain the growth of Australia's population?. Geographical Research49(3), 301-316.
  • Scott, C. A., & Shah, T. (2004). Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. International Journal of Water Resources Development20(2), 149-164.
  • van Steenbergen, F., Kumsa, A., & Al-Awlaki, N. (2015). Understanding political will in groundwater management: Comparing Yemen and Ethiopia. Water Alternatives8(1), 774-799.
  • Strand, J. (2010). The full economic cost of groundwater extraction, Policy Research Working Paper 5494, The World Bank, Development Research Goup, Enviroment and Energyu Team, http://papers.ssrn.com/sol3/papers. cfm?abstract id=1721332.
  • UN Department of Economic and Social Affairs, 2020. The 17 Goals [online]. United Nations. Available: https://sdgs.un.org/goals. Accessed 20 Feb 2022.
  • Ursitti, A., Giannoccaro, G., Prosperi, M., De Meo, E., & De Gennaro, B. C. (2018). The magnitude and cost of groundwater metering and control in agriculture. Water10(3), 344.
  • Usman, M., Liedl, R., & Awan, U. K. (2015). Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan. Journal of hydrology525, 26-41.
  • Wada, Y., van Beek, L. P., & Bierkens, M. F. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research48(6).
  • Wang, L., Kinzelbach, W., Yao, H., Steiner, J., & Wang, H. (2020). How to Meter Agricultural Pumping at Numerous Small-Scale Wells?—An Indirect Monitoring Method Using Electric Energy as Proxy. Water12(9), 2477.
  • Wang, X., Shao, J., Steenbergen, F. V., & Zhang, Q. (2017). Implementing the prepaid smart meter system for irrigated groundwater production in northern China: Status and problems. Water9(6), 379.
  • World Water Assessment Programme (United Nations), & UN-Water. (2009). The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO, and London: Earthscan.
  • Zekri, S. (2009). Controlling groundwater pumping online. Journal of Environmental Management90(11), 3581-3588.
  • Zekri, S., Madani, K., Bazargan-Lari, M. R., Kotagama, H., & Kalbus, E. (2017). Feasibility of adopting smart water meters in aquifer management: An integrated hydro-economic analysis. Agricultural Water Management181, 85-93.